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Abstract

Over the past decade, genome-wide assays for chromatin interactions in single cells have enabled the study of individual
nuclei at unprecedented resolution and throughput. Current chromosome conformation capture techniques survey contacts
for up to tens of thousands of individual cells, improving our understanding of genome function in 3D. However, these
methods recover a small fraction of all contacts in single cells, requiring specialised processing of sparse interactome data.
In this review, we highlight recent advances in methods for the interpretation of single-cell genomic contacts. After
discussing the strengths and limitations of these methods, we outline frontiers for future development in this rapidly
moving field.
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Introduction

Detecting specific DNA positioning in single cells was first pro-
posed over half a century ago [44, 72]. Deriving statistically
reliable general patterns of chromatin folding in single cells,
however, has been challenging [5]. Improvements towards this
goal have included: increasing the number of analysed cells,
studying more loci (up to the complete genome), reducing the
size of the interacting regions and improving discriminative
power for detection of contacts at a broader scale of spatial
distances. There are two main approaches: microscopy based and
capture based. These two types of methods, despite their limita-
tions, provide complementary views on the chromatin structure
of single cells [92].

Targeted microscopy approaches measure spatial distances
between genomic regions in individual cells using labelled
probes. These typically involve complicated probe design, which
can be overcome with a new in situ sequencing technique [73]
but remains challenging to implement. With any microscopy
approach, trade-offs have to be considered: which cells are
analysed (fixed or living), number of targeted regions, time

Aleksandra Galitsyna is a PhD student in Prof. Gelfand’s group at Skolkovo Institute of Science and Technology. Her scientific agenda includes various
topic in the broad field of chromatin research focused on biology and bioinformatics of single cells.
Mikhail Gelfand is a bioinformatician, professor at the Center of Life Sciences and vice president for biomedical research at the Skolkovo Institute of
Science and Technology, Moscow, Russia. His scientific interests include a broad range of problems, ranging from bacterial genomics and evolution to
transcriptomics, splicing and mRNA editing in eukaryotes, with chromatin structural analysis being one of them.
Submitted: 31 May 2021; Received (in revised form): 09 July 2021

© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

dynamics and resolution of obtained images. For an extended
discussion, we refer the reader to recent reviews [5, 8].

Chromosome conformation capture uses crosslinking, digestion
and proximity ligation to detect genomic regions located close
to each other in 3D space. It was originally designed for
inputs of millions of cells and had higher statistical power
than microscopy [23]. An explosion of conformation-based
techniques, including the high-throughput sequencing-based
Hi-C [64], has paved the way for new discoveries expanding
our general understanding of DNA folding in eukaryotic cells
[34], bacterial cells [19] and even viruses [9]. For eukaryotes,
these patterns include topologically associating domains (TADs),
promoter-enhancer and architectural loops and compartments
(reviewed in-depth by [6, 21, 22, 84]).

A long-standing impediment to our interpretation and
understanding of structure formation principles is that chro-
matin features in individual cells are not equivalent to the
average features in a population of cells [31]. To address this
problem, the first single-cell chromosome conformation capture assay
(scHi-C) reduced the scale of the traditional Hi-C protocol to
one cell per reaction tube [68]. Then, scHi-C was extended by
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introduction of sorting into multi-well plates and tagmentation
followed by polymerase chain reaction (PCR) [69]. A similar
approach, single-nucleus Hi-C (snHi-C) substituted traditional PCR
with whole-genome amplification and cut out the biotin fill-
in step. This came, however, at the cost of larger sequencing
volumes and data processing [28, 32]. Diploid chromatin conforma-
tion capture (Dip-C) has adapted tagmentation-based strategies
[86, 87], simplifying the experimental protocol [85]. Single-cell
combinatorial indexed Hi-C (sciHi-C) is yet another powerful
technique based on several rounds of combinatorial barcoding
of diluted samples without isolation of individual cells [49, 76].
scHi-C can be combined with other assays to investigate the
methylome, such as Methyl-3C and sn-m3C-seq [55, 57]. For the
sake of simplicity, we will refer to all the family of methods a
scHi-C throughout this review.

Alongside scHi-C, there is a growing family of many-body
interaction capture methods, including MC-3C [88], PORE-C [91],
Nano-C [13]. These methods recover up to several dozens of
pairwise contacts from individual cells but cannot yet compete
with scHi-C in genome-wide searches for architectural features.
Single-cell SPRITE is a ligation-free method that generates 30
times more contacts but captures interacting complexes instead
of pairs [2].

The main challenge of analysing scHi-C data is extreme data
sparsity. On average, up to 700 000 interactions are captured
in any given cell (for mouse [55]). Thus, the power of scHi-C
manifests itself when data for multiple cells are available. Firstly,
it makes the detection of chromatin patterns of individual cells
statistically reliable. Twenty cells may already be sufficient to
assess the presence of TADs, compartments and loops at the
level of individual cells of Drosophila [93]. Secondly, multiple cells
may be clustered into groups of similar types and pooled in
silico. Such pseudo-bulk Hi-C of scHi-C-guided groups is a better
alternative to bulk Hi-C, where the contacts formed in different
cell types are indistinguishable [69, 85, 87]. To analyse such
data, one needs specialised tools and computational pipelines,
which are currently designed ad hoc and are rarely re-used or
cross-tested. Here, we describe the diversity of recent scHi-C
studies and summarise computational approaches to single-cell
interactome data (for a recent review of similar topics, see [102]).

Overview of single-cell Hi-C techniques
Like traditional bulk Hi-C, single-cell Hi-C includes chromatin
crosslinking, cells permeabilisation, DNA digestion, proximity
ligation and library preparation. A crucial step of scHi-C, how-
ever, is either isolation or barcoding of individual cells. To separate
contacts from each nucleus, a typical approach is to isolate
cells or nuclei into individual reaction mixtures and perform
subsequent steps separately. The isolation can be done following
crosslinking of cells [28, 82], after ligation [85–87] or right before
de-crosslinking [16, 68, 69]. Technically, this is performed by
manual placement of each nucleus into a single tube [28, 32]
or fluorescence-activated cell/nucleus sorting (FACS/FANS) into
individual wells of a plate [16, 82, 87]. Right before or during
sorting, optional steps can be included, such as imaging [52, 82]
or bisulfite conversion [55, 57]. Isolation-free technique single-
cell combinatorial indexed Hi-C (sciHi-C) involves several rounds of
combinatorial barcoding of the diluted cells [49, 76]. Isolation-
free sciHi-C requires demultiplexing as one of the first data pro-
cessing steps, while the isolation approach may [69] or may not
include this step. A more comprehensive overview of the scHi-C
experimental technique can be found [92], but we will highlight

aspects of different protocols that are particularly relevant for
data processing (Figure 1).

The initial step of the scHi-C protocol is to crosslink cells with
formaldehyde, resulting in the fixation of DNA-DNA interac-
tions. Next, cell membranes are lysed to guarantee the delivery of
reagents into the nucleus. Then, DNA is digested by a restriction
enzyme such as DpnII that cuts at the four-letter palindromic
motif GATC (Figure 1A). This produces free ends of restriction
fragments, which are then ligated either directly [28, 32, 85–87],
after biotin fill-in [68, 69, 82] or after ligation of a biotinylated
bridge adaptor [49, 76] (Figure 1B). Ligation junctions containing
biotin-labelled nucleotides are pulled down using streptavidin.
This pulldown is omitted in some scHi-C variants because it
results in a loss of meaningful contacts [28, 32, 85–87]. Regard-
less of the ligation procedure, properly formed junctions are
expected to contain specific sequences (restriction sites with or
without a bridge, Figure 1), which can be used to computationally
select real contacts [93]. The final step of scHi-C is to extract
DNA and prepare it for sequencing. Multiple library prepara-
tion strategies were probed with scHi-C (Figure 1C), including
whole-genome amplification (Illustra WGA in [28], META WGA
in [87]), tagmentation followed by PCR [69], digestion with a
restriction enzyme followed by primers ligation and PCR [68],
barcoding and PCR [76] or PCR with random primers [57]. While
tagmentation and restriction enzyme digestion generate fixed-
point cuts in the DNA resulting in simple rules for computational
deduplication of the pairs with coinciding mapping positions,
this is not the case for whole-genome amplification and PCR
with random primers, for which other deduplication schemes
should be used. Finally, amplified DNA is purified and sequenced
in the paired-end mode.

Data processing workflow
The data processing workflow (Figure 2A and B) consists of
general steps shared with typical Hi-C: optional pre-processing
of reads (trimming, demultiplexing, etc.), read mapping, optional
restriction fragment assignment, filtration of contacts and dedu-
plication and binning with generation of single-cell Hi-C maps.
The cells are typically filtered by the quality and/or the number
of contacts.

Mapping of reads

As with any other conformation capture, scHi-C generates
chimeric DNA molecules (Figure 2C), making the mapping of
these discontinuous reads to multiple genomic locations non-
trivial [51]. Standard mappers, such as bowtie2 [54], cannot
reliably map such reads. There are four main approaches
to treat scHi-C chimaeras, three of them transferred from
traditional bulk Hi-C: split read alignment, iterative mapping
and read clipping. The fourth approach is one-read-based
mapping (ORBITA), a special case of the split read alignment
[93], which attempts to find only those contact pairs that are
directly ligated (Figure 2c). In the split read alignment strategy,
specialised mappers like bwa mem [58] detect multiple sequential
alignments in each read. Of these, only the representative
alignments are retained (typically, the alignments at 5′-end).
Some studies use the information about 3′-end alignments
to specify the endpoints of contacting fragments [86]. Iterative
mapping is a method of analysing chimeric reads initially used
for traditional Hi-C [42] and adapted for single-cells [28, 32]:
short 5′ sequences of increasing size are iteratively selected on
both forward and reverse reads until the mapping of the pair
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Figure 1. Overview of variations in scHi-C protocols relevant for data processing. A. Cross-linking and digestion, used in any scHi-C. B. Variations of the ligation step.

C. Variations of the library preparation. RE1 and RE2 denote restriction enzymes selected for corresponding stages.

(or coverage of the full read length) is achieved [51]. In read
clipping, reads are scanned for the restriction site [69, 82] or
bridge adapter [76], and all the 3′ sequences after the match
are removed. Two resulting paired sequences (one for forward
and one for reverse read) are mapped independently and form
a contact pair if the mapping was successful. However, only
one-read-based interactions annotation utilises the information on
chimeric parts to guarantees that the observed pair is a direct
ligation junction of DNA fragments (Figure 2c). This approach
reduces erroneous contacts in scHi-C data [93].

Another problem during scHi-C read mapping is genetic vari-
ation. Some regions of the genome of the studied cells differ from
the reference hampering the mappability. Moreover, the cells are
not guaranteed to descend from a single clone [86] and may have
intrinsic variation, such as single-nucleotide polymorphisms
(SNPs). Thus, some studies [82] ignore genomic locations with
SNPs and prohibit mapping mismatches. On the other hand,
SNPs can be a powerful source of information to help distinguish
haplotype alleles [16, 69, 86] and impute the contacts of the
maternal and paternal chromosomes [86].

Filtering of contacts

After mapping, the scHi-C maps are vastly populated with ampli-
fication duplicates, contacts of promiscuous genomic regions and arti-
factual contacts, which can be detected and filtered out.

Amplification duplicates are identical or nearly identical copies
of the same contact pairs generated during library preparation.
Depending on the experimental protocol, the scHi-C duplicates
do not necessarily have the same mapping positions in the
genome. Whole-genome amplification and PCR with random
primers produce DNA fragments that may originate at random
locations close to actual ligation position. Thus, if a group of con-
tact pairs has the same restriction fragments [76] or their termini
[69, 93], these contacts are likely to have been duplicated and
should be merged into a single contact. Alternatively, contacts
of the same 500 bp-bins [28] or contacts located closer than 1 kb
[86] may be merged directly [28] or iteratively [86].

The genome coverage in conformation capture is affected
by multiple factors, including replication, DNA accessibility, GC-
content and active chromatin state [42, 78, 97]. In bulk Hi-C,
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Figure 2. Outline of single-cell Hi-C data processing. The steps in brackets are optional, depending on the scHi-C protocol and the pipeline specifics.

this is mitigated by correction, such as iterative balancing [42].
However, due to data sparsity, this step is not recommended
for scHi-C (although proposed as intermediary step of quality
assessment [40]), and little research has been devoted to scHi-
C correction alternatives [59, 66]. In the absence of data correc-
tion, scHi-C may bear intrinsic biases, such as larger numbers
of contacts formed by active regions [93] and early replication
domains [69]. Larger numbers of contacts have been suggested
for regions with genomic rearrangements [69], e.g. Stevens et al.
[82] detected trisomy by the increased number of contacts for the
whole chromosome. As a partial remedy, one can remove contacts
of promiscuous genomic regions [68, 69, 93], e.g. 1 Kb regions that
have more than ten contacts in a given cell [86].

Artifactual contacts are random contacts happening at various
stages of scHi-C sample preparation and data processing, typi-
cally not representative of the real 3D conformation of chromatin
and impairing downstream analysis. First of all, properly formed
and mapped pairs should be located close to the restriction sites.
scHi-C protocols using Phi29 phage polymerase can generate
switch templates during WGA that are devoid of this feature and
should be discarded [93]. The original scHi-C protocol generates
a number of spurious ligations, likely represented by the pairs
supported by a single read [68]. Frequent artefacts are sequencing
pairing mismatches, having a global rate of 0.1% for Illumina [69,
76], as assessed by admixture of phiX174 DNA to mouse cells [69].
Stevens et al. [82] suggested a general scheme for filtering a broad
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range of scHi-C artefacts, which is based on the assumption
that the regions in close spatial proximity have the neighbouring
genomic regions located nearby, also forming a contact. Thus, if
the contact is isolated (e.g. is not supported by neighbours within
2 Mb distance [82]), it is likely to represent an artefact and should
be removed [82, 86].

Filtering of cells

Data from some cells should entirely be discarded due to the
failure of the protocol in those cells. Multiple criteria to identify
such problematic cells were proposed: robustness to downsampling
[93], fraction of read-pairs sequenced only once [68] and fraction of
non-digested DNA [69]. The most commonly used criterion is
cell coverage, that is, the total number of detected contacts per
cell [69]. For example, the cell coverage in sciHi-C follows the
bimodal distribution, with low-coverage cells likely representing
in-solution DNA noise [76]. Yet, another popular criterion is
cumulative contacts properties, such as cis-to-trans ratio [68, 69,
76], defined as the ratio of the intrachromosomal contacts to the
interchromosomal contacts. Typically, interchromosomal con-
tacts in the chromatin occur with a lower probability than intra-
chromosomal ones, a phenomenon called chromosome territorial-
ity [17]. Artifactual contacts are less likely to depend on the 3D
distance between corresponding genomic positions and, thus,
a deviating cis-to-trans ratio for a cell might signify excessive
spurious ligation. Similar assumptions are used to filtrate the
cells by distance decay properties of contacts [69] and cross-species
ligation frequency [69, 76]. Another notion guiding the choice of
high-quality cells is that scHi-C contacts tend to be found in
clusters. Based on this observation, GiniQC measures the level
of unevenness of inter-chromosomal scHi-C maps [40].

Data structure
The scHi-C contact data are typically represented as a matrix,
similar to the standard Hi-C [68]. Each cell in this matrix cor-
responds to a pair of genomic bins, and the value in a cell is
the absolute number of interactions between these bins. A set
of experiments is stored as a set of matrices, while specialised
file formats exist to store matrices for a number of cells, such
as scool [96]. Hypergraphs [99] and ‘topics’ [49] are representa-
tions for a set of cells used for specialised applications, such
as prediction of contacts using machine learning [99] and data
decomposition [49]. For special applications, scHi-C can be rep-
resented as a vector, for example, when scRNA-Seq methods
are transferred to 2D data [37]. The 3D model is a popular
representation, although it requires substantial preprocessing
of the data and is not necessarily back-convertible to the set of
initial contacts [68, 82, 86].

Graph representation

Graph representation [10, 100] is a popular representation that
can be used to upper bound for the number of pairwise contacts in
scHi-C maps [93] (Figure 3A). This upper bound can be defined
for scHi-C but not bulk because a single cell with defined DNA
content is used in the experiment. It depends on the number of
restriction fragments that can potentially form contacts, which
in each cell depends on the restriction site frequency, the organ-
ism’s genome size and the number of DNA copies in a particular
cell type. For example, a single copy of the mouse genome mm10
[15] contains 6.6 million DpnII restriction sites (Figure 3B). In
theory, if both ends of each restriction fragment were ligated to

the ends of other restriction fragments and all ends are ligated,
then the fragments form a circle graph. Thus, the number of
contacts that could be detected would equal to the number of
restriction fragments (Figure 3A). If two copies of the mouse
genome are present (in a diploid cell), the number of possible
contacts will be around 13.2 million. This number may be higher
for cells during mitosis, S or G2 phase of the cell cycle, when
the genomic content, and hence the number of restriction frag-
ments, is completely or partially doubled. Although non-realistic
to achieve in the working conditions of scHi-C, this number
can serve as a theoretical upper bound to the possible number
of pairwise contacts in a single nucleus. Notably, the largest
number of contacts per cell obtained to date for mammals [57,
85] is already larger than the theoretical limit for the haploid
genome of Drosophila melanogaster (Figure 3C), suggesting that
the complete recovery of contacts of small genomes is possible
with scHi-C.

The upper bound estimate can serve as a normalisation
factor for contacts recovery in scHi-C studies (Figure 3D). The
best standard scHi-C [93] has 17% contacts recovery and the joint
assay with methylation, sn-m3C-seq, almost reaches 25% [55]. It
is important to note that for an ideal scHi-C with 100% recovery,
we still cannot expect more than 2.4 interactions per 1 Kb of the
genome (for haploid mm10 genome). This number is two orders
of magnitude lower than bulk Hi-C (around 1700 contacts per
1Kb or genome in neural progenitor cells [7]). Thus, even if the
theoretical limit is reached, scHi-C remains profoundly sparse
and specialised software is required for its downstream analysis.

Data analysis
There are two general approaches to the scHi-C data analysis,
depending on the solution to the problem of low statistical
power of scHi-C data sparsity. In the first one, every single cell
is processed independently. It includes building its 3D model,
data imputation, aggregation analysis and features calling. In the
second approach, single-cell maps are analysed together, then
grouped and pooled to produce pseudo-bulk Hi-C maps.

Structure reconstruction

A typical approach for the 3D structure reconstruction is to build
a beads-on-string model restrained by molecular dynamics with
simulated annealing [68]. Each bead corresponds to a genomic
bin of a given size (ranging from 10 Kb [93] to 1 Mb [69]), while
each bond is either a polymer backbone or an observed scHi-
C contact. The simulation starts from a random initial confor-
mation, where the beads involved in observed scHi-C interac-
tions might be overstretched. The beads connected by bonds are
attracted to each other, forcing a rearrangement of the structure
so that connected beads are located in close spatial proximity.
Some bonds do not balance and remain overstretched; thus,
they can be removed [82, 93] as potential experimental arte-
facts [53]. Other proposed solutions include Bayesian inference
[11], recurrence plots [39] and lattice models [103]. All these
methods remain data driven and do not account for the actual
mechanisms of chromatin structure formation [43].

Imputation of missing data

Due to contacts sparsity, applications of bulk Hi-C analysis tools
to scHi-C are restricted [59]. To mitigate this effect, imputa-
tion techniques bring the numbers of scHi-C contacts closer
to bulk [102]. Zhou et al. [100] populate the map with contacts
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Figure 3. A. Illustrative upper bound estimation of the possible number of pairwise contacts per single cell. The theoretical genome has nine restriction fragments that

form a circle graph after ideal ligation (nodes are restriction fragments with the valency of 2, edges denote ligation of their ends). B. Total numbers of DpnII restriction

sites for the single copies of popular genomes. C. Descriptive statistics of published scHi-C studies. The lines represent the upper bounds for the possible number of

contacts per single cell from (B). Colour indicate species. D. The best cells for some of the published scHi-C datasets as a function of the publication time. For C and

D, we use the numbers reported in the supplementary materials of the original studies, when possible. For each study, we indicate the first author and the names of

scHi-C techniques self-reported by the authors. For [49] and [76], the mean is calculated based on the median count per dataset. For [86], we used the cleaned contacts

after removal of damaged cells. For [55], the calculated mean is based on the numbers reported for 741 cells in the supplementary table.

generated by a random walk, making the scHi-C graph closer
to a complete clique. Stevens et al. [82] and Ulianov et al. [93]
use the maps imputed by polymer models. Notably, both TADs
and compartments can also be readily assessed from model-
imputed maps [82, 93], with TADs similar to those in original
scHi-C data [93]. As a substantial breakthrough in scHi-C data
imputation, inter-cellular patterns of contacts can be accounted
for by the hypergraph neural network [99]. Some studies test the
technical possibility to transfer dropout imputation algorithms

for single-cell RNA-Seq, although lacking theoretical support
[37].

Contacts aggregation and features calling

Two approaches have been suggested to study TADs, loops and
compartments in scHi-C maps, aggregation analysis and features
calling (Figure 5). During aggregation, the statistics of contacts is
accumulated over predefined regions of the genome (e.g. CTCF
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Single-cell Hi-C data analysis 7

Figure 4. Approaches to studying a single scHi-C map (A) and a set of scHi-C maps (B). Single-cell Hi-C maps from [28] for the region chr1:9000000-1000000.

binding positions to assess loops; bulk TADs or bulk compart-
ments). Aggregation confirms the presence of these chromatin
features in individual cells [32], and there is specialised software
for this purpose [29]. With features calling, the positions of indi-
vidual loops [82], TADs [28, 60, 75, 93] and compartments [75, 86]
are found directly in the scHi-C map, demanding high-quality
scHi-C maps and providing insight into variability between indi-
vidual cells. For example, the positions of TADs in individual
cells demonstrated higher stability of TAD boundaries between
individual cells of Drosophila than between mouse oocytes [93].

scHi-C embedding

scHi-C data are multidimensional (∼ N2 contacts measurements
for N genomic regions) and can be projected into a space of
lower dimension for visualisation, clustering and sorting. Typical
visualisation is a scatter plot where each dot is a cell, and the
axes correspond to some characteristics of the cells. The values
on the axes can be derived from some additional measurement,
such as the levels of the DNA replication marker geminin and
DNA content from FACS [69] or the level of DNA methylation
[55, 57]. Alternatively, the axes can represent some explicitly
calculated interpretable characteristic of the scHi-C maps, such
as the total number of contacts, the cis-to-trans ratio [16, 69] and
the percentage of local/mitotic contacts [16, 69]. Tan et al. [86]
characterise the 3D models instead, plotting the strength of the

Rabl configuration, the centrality of telomeres, the number of
interchromosomal neighbours, the average CpG content of the
neighbours and the probability of cell-type-specific loops.

Finally, the axes might not readily correspond to any known
biological characteristics—scHi-C maps can be transformed and
subjected to dimensionality reduction by the principal component
analysis (PCA) or other techniques (see Table 1 for comparison).
For example, Ramani et al. [76] apply PCA to matrices of inter-
chromosomal interactions and find that the first component
explains a large fraction of the variance (52.1%) and strongly cor-
relates with the coverage. The combination of the first and sec-
ond (1.07% explained variance) components distinguishes cell
types. Nagano et al. [69] observe the cell cycle-dependent embed-
ding of scHi-C by calculating the pairwise symmetric Kullback–
Liebler divergence on vectors of distance decays and subsequent
spectral embedding. Collombet et al. [16] apply uniform manifold
approximation and projection (UMAP) to vectors of TAD contact
profiles; Li et al. [60] perform PCA on pairwise similarities of TAD
profiles; Tan et al. [87] calculate the compartment score profiles
for each cell, take 20 principal components and then visualise
it with t-distributed stochastic neighbour embedding (t-SNE). One of
the most generalised approaches is HiCRep [100], which calcu-
lates a similarity matrix between each pair of individual cells,
taking the stratum-adjusted correlation coefficient (SCC) measure of
similarity. HiCRep with subsequent multidimensional scaling (MDS)
has proved to be one of the best approaches to study embedded
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8 Galitsyna and Gelfand

Figure 5. Comparison of aggregation of contacts and features calling for TADs, loops and compartments. All the examples are for the Drosophila scHi-C map of Cell 1

from [93]. Average TAD and saddle plot are for bulk TADs and compartments, while average loop is for the top 1000 regions with the highest content of RED chromatin

state from [48].

scHi-C datasets [65]. In this approach, Zhou et al. [100] propose to
impute potential dropouts before the embedding to increase the
cluster separation. The imputation was further supplemented
it with scRNA-Seq dropout correction methods [37] (but see the
discussion above).

An alternative, scHiCExplorer [96], implements an approx-
imate nearest neighbour method with a local sensitive hash
function, MinHash. Finally, some approaches suggest using
the co-occurrence of contacts in individual cells to base the
embedding on meaningful single-cell patterns. For example, Kim
et al. [49] applied latent Dirichlet allocation to factorise the scHi-C
dataset into a set of documents, words and topics, and Zhang
et al. [99] used a hyper-graph neural network. In all these studies,

the axes created by in silico approaches are rarely interpreted,
and it might be of interest to correlate them with various scHi-
C characteristics such as the contact coverage, distance decay,
strength of TADs, loops and compartments.

A more exotic approach is to describe scHi-C space in terms of
topological data analysis [10]. Finally, joint assays of the methy-
lome and interactome [55, 57] allow for independent embeddings
of scHi-C and single-cell methylation patterns and subsequent
comparison of resulting embeddings.

To date, no comprehensive studies on embedding all exist-
ing scHi-C datasets have been published. Moreover, there have
been no attempts to embed datasets originating from different
species, although scHi-C data for human [28, 49, 76, 86], mouse
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Single-cell Hi-C data analysis 9

Table 1. Summary of major scHi-C embedding techniques

Family of
embedding
methods

Linearity Primary
reference

Special scHi-C
pre-processing

Special measure of
similarity/difference
between cells

Explicit usage of
contacts
co-occurrence
patterns

PCA Linear [100] Raw binned matrix – No

[76] Interchromosomal
interactions profile

– No

[60] TAD profile – No

[87] Compartment score profile – No

t-SNE Non-linear [85] 20 PCs of compartment
score profiles

– No

Spectral
embedding

Non-linear [69] Distance decays Symmetric KL No

MDS Non-linear [65] Distance decay Jensen–Shannon
divergence

No

[100] scHi-C binned matrix after
smoothing and
random-walk imputation

SCC No

UMAP Non-linear [16] TAD contact profiles – No

[49] Cell-topic matrix after LDA – Yes

[99] Hypergraph embedding – Yes

MDS indicates multidimensional scaling; SCC, stratum-adjusted correlation coefficient; UMAP, uniform manifold approximation and projection.

[16, 68, 69, 76, 82, 85, 87], Drosophila [93] and rice [101] are avail-
able. This might identify species-specific patterns in genomic
interactions and their variability.

While both linear and non-linear embeddings of scHi-C have
been proposed, advanced manifold learning techniques are yet to
be developed for scHi-C, analogous to the outbreak of embedding
methods for single-cell RNA-Seq data (reviewed in [67]). At that,
multiple, diverse formalisations of scHi-C as matrices, graphs
and vectors allow for a broad field of embedding techniques to
be studied on these datasets.

In silico sorting, clustering and pooling

Based on the position in the embedding space, scHi-C data can be
in silico sorted [69] or clustered [85]. Nagano et al. [69] observed the
ordering of the cells by the position in the cell cycle, while Tan
et al. [85] derived subtypes of mouse brain cells using k-means.
Collombet et al. [16] relied on outliers in the embedding space
to filter out cells undergoing mitosis and retain only interphase
embryonic cells.

Specialised approaches, including the ones based on
machine learning, have been designed for scHi-C data clustering.
Typically, these applications require embedding (see below). The
quality of clustering is tested on datasets with known ground
truth (e.g. types of pronuclei in the mouse zygote [28] or types
of cells forming the dataset [76]). Each cluster, or group of cells,
is assigned with a particular cell type and the quality is usually
assessed by normalised mutual information [62] or adjusted
rand score [62, 100].

The resulting groups of cells can be pooled by simple summa-
tion of single-cell Hi-C maps, resulting in ensemble, or pseudo-bulk,
Hi-C and analysed as typical bulk Hi-C [16, 69, 85]. Pseudo-bulk

scHi-C maps are a powerful technique for detection of cell-type
specific differences in the chromatin architecture. For example,
pseudo-bulk mitotic cells lack the TAD and compartment struc-
ture [69], while subtypes of brain cells have differences in regions
of cell-type specific genes [85].

The long-studied field is the reverse of the pooling, namely
deconvolution of bulk interaction maps into a set on single cells
[46]. Such approaches aim to construct a population of genome
structures with a total set of genomic interactions approxi-
mating (or equal to) a set observed in a population of nuclei.
Several advanced techniques including machine learning have
been suggested, such as maximum likelihood [89], Bayesian inference
[12], fractal Monte Carlo weight enrichment with Bayesian deconvolu-
tion [74], Monte Carlo with bag of little bootstraps for the genera-
tion of bootstrap structures [83] and, most recently, stochastic
embedding [36]. However, these approaches are limited by the
number of models that approximate bulk datasets (up to several
tens of thousands), although around 5–10 million structures
contribute to the typical bulk Hi-C map. Nevertheless, it might
be interesting to demonstrate the reversibility of the pooling of
a low number of single-cell maps by applying some of these
methods to pseudo-bulk datasets. Guarnera et al. [36] assessed
the variability of polymers after deconvolution, which might be
interesting to compare with results obtained from embeddings
of real scHi-C.

Design of scHi-C controls

Due to the complex nature of scHi-C data, a good practice is to
design scHi-C controls to validate the hypotheses. These include
sampled, shuffled or de novo generated randomised scHi-C maps,
which typically have the same number of contacts as real cells.
Sampled maps are populated by contacts randomly selected from
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bulk [93] or ensemble [68, 76] datasets. However, it creates maps
less sparse and heterogeneous than real scHi-C maps [100]. Thus,
an effective number of sampled contacts can be increased or
additional artificial noise can be introduced [100]. Shuffled maps
are single-cell maps with randomly permuted pairs of contacts
[68]. This procedure retains coverage by contacts but removes
any information on the spatial structure, including distance
decay. Sampling and shuffling can be combined together: bulk
Hi-C maps first randomised, preserving the coverage and dis-
tance decay, and then sampled [69]. De novo generative models
do not rely directly on the observed contact maps while pre-
serving the meaningful properties of scHi-C maps. For example,
thresholding the distance between genomic regions in polymer
models [93] produces control maps with meaningful distance
decays. A more advanced alternative, stepwise generation of
single-cell Hi-C-like maps, preserves both distance decay and
observed coverage by contacts [93].

Controls like this allow differentiating the technical and bio-
logical properties of the single-cell contact maps for features
calling (such as TADs) and aggregation analysis [93]. They pro-
vided the baseline for assessing the general quality of modelling
by the number of violated constraints [68]. Further, they demon-
strated that scHi-C maps are non-random [82] and chromatin
features of the modelled cells are similar to that of the real cells
[69, 82, 93]. Yet another important observation is that real scHi-C
data are more variable and sparse than bulk subsamples [100].
Although randomised scHi-C control is a powerful method, it is
sporadically used in scHi-C studies. This will improve with the
development of specialised tools for this task and the emergence
of theoretical studies on the statistical properties of single-cell
contacts.

Outlook and challenges
Single-cell Hi-C is a young and rapidly developing field in chro-
matin biology. Due to its extreme data sparsity and complicated
experimental protocol, the quality of the datasets has been a
limiting factor. However, with the emergence of simplified and
cheaper protocols [76, 86], we anticipate continued growth of
both coverage of scHi-C and number of cells analysed, leading to
improved data resolution and statistical reliability of the biologi-
cal results. This will also stimulate the development of new data
processing and analysis methods. However, as we demonstrated
here, scHi-C data have a natural upper bound for the possible
number of recovered single-cell interactions; thus, data sparsity
will remain a challenge for the field.

Despite the substantial efforts to work with sparse data, the
computational analysis of scHi-C has not reached maturity yet.
For example, a recent re-analysis of datasets from three studies
demonstrated that inappropriate contacts mapping may result
in the accumulation of experimental artefacts and overestima-
tion of the number of recovered contacts [93]. However, if the
data from multiple studies were processed uniformly, it demon-
strated that TAD boundaries in Drosophila are more conserved
than in mouse. Similar comparative analysis of scHi-C results
will further shed light on reproducible chromatin features in
individual cells in an unbiased way.

Machine learning has a growing impact on our under-
standing of biological systems (reviewed in [27, 63]) and 3D
genomics [4, 30, 77, 79, 94, 95]. For single-cell chromatin research,
imputation and embedding are already driven by neural
networks [99] and other advanced machine learning methods
will emerge. Importantly, features calling from single-cell data
will be improved.

Next, an important direction is improving structural recon-
struction approaches. To date, scHi-C structure reconstruction
does not account for a specific mechanism of structure for-
mation. Alternative de novo modelling assumes the particular
mechanism but does not incorporate scHi-C contacts [28, 30].
These approaches can be, in theory, united to open intriguing
perspectives. For example, can we simulate loop extrusion [31]
that will produce the contact maps similar to those observed in
scHi-C? Can we infer the cohesin loading sites in individual cells
based on observed contacts? Finally, can we differentiate the
cohesin-dependent contacts in single cells from compartmental
ones [32] and study them independently?

These challenges are not the only ones that will require
computational solutions. An important direction will be the
design of new assays, as well as tools for their data processing.
For example, currently, restriction enzymes digest chromatin
into relatively large restriction fragments, which dictates the
strict upper bound for the total number of pairwise contacts
recoverable from a single cell. If micrococcal nuclease is used
instead, it will allow for up to 15 million contacts of individual
nucleosomes in the haploid human genome [1], increasing the
theoretical upper bound at least twice.

Joint assays, other than Methyl-3C and sc-me3C, will unravel
the interplay of chromatin architecture with other cellular mech-
anisms. For example, measuring single-cell lamina-associating
domains (LADs) alongside scHi-C will shed light on the lamina
association of individual TADs. Indeed, bulk TADs do not entirely
correspond to either bulk [91] and single-cell LADs [50]. How-
ever, it is possible that single-cell TADs are elementary units
of interaction with lamina if there is a one-to-one correspon-
dence between TADs and LADs observed in the same cell. Next,
measuring chromatin openness and/or transcriptional activity
will accelerate the research on interplay and causality between
regulation, chromatin folding and gene expression [24]. On the
computational side, having more than one type of measurement
in single cells is a unique opportunity to develop joint embed-
ding [56] methods, which use both interaction graphs and single-
cell features to create meaningful low-dimensionality represen-
tation. Also, having several types of measurements will help to
develop and benchmark standard scHi-C embedding techniques.

Single-cell RNA-DNA contacts will help distinguish RNA-
mediated interactions from the rest and depict the single-cell
pattern of regulatory RNA functioning. However, the resolution
of bulk RNA-DNA interaction capture techniques is relatively
low [3, 33, 61, 81], which will remain a major impediment for
single-cell RNA-DNA interactions as well.

Currently, scHi-C requires vast sequencing with relatively low
meaningful output (e.g. Ramani et al. [76] sequenced over 170
mln reads per dataset on average, only 11% of them resulting
in unique contacts). However, studying biological mechanisms
of chromatin compaction and regulation frequently requires
engineering and targeting of individual regions of the genome
limited in size. Thus, it might be beneficial to develop single-
cell Hi-C with enrichment for targets. Target enrichment for a
genomic region is already well developed for bulk chromosome
capture approaches [20, 25, 35]. Adaptation of these approaches
for the single-cell level will allow for specific enrichment of
single-cell interactions of regulatory regions that might undergo
the specific architectural changes in a cell population.

As both wet-lab and computational scHi-C methods improve,
it will lead to breakthroughs in understanding biological sys-
tems currently restricted by bulk Hi-C. For example, chromatin
transitions during mouse embryogenesis were studied by low-
input Hi-C [26, 47], which accommodates the limited number
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of embryos available but does not distinguish individual cells.
Starting from the zygote and up until the gastrulation (stage
E7.5), chromatin features gradually emerge. At stage E7.5, the
embryo has approximately 15000 cells, some differentiated into
progenitors of diverse tissues and organs [90]. Their variability
can be recovered only by scHi-C. Indeed, scHi-C demonstrated
cell- and allele-specific patterns of chromosomes folding in
mouse embryos but only up to a much earlier stage of 64 cells
[16, 28, 32]. Given the fact that existing scHi-C assay several tens
of thousands of cells [49], a whole-embryo single-cell chromatin
structure study is a realistic short-term goal. This opens an
intriguing perspective to answer fundamental questions about
chromatin dynamics in development. What paths do chromo-
somes follow in individual nuclei during tissue differentiation
and organogenesis? Can we track the lineages of cells based
on their chromatin, as we do for single-cell transcription [80]?
Finally, what are the rules governing chromatin transitions in
individual cells during the development of other species stud-
ied by bulk Hi-C, including human [14], Xenopus tropicalis [71],
Medaka fish [70], Danio rerio [45] and Drosophila melanogaster [41]?

Next, scHi-C will uncover the diversity of chromatin archi-
tecture within cancer cell, contributing to the clonal analy-
sis of solid and liquid tumours currently done with genomic
and transcriptomic methods. Finally, single-cell atlases of chro-
matin architecture for cell types of different organs will expand
our knowledge on chromatin structural diversity. Their proper
association with single-cell atlases of transcription [38] and
chromatin openness [18, 98] will unravel the interplay between
epigenetics, chromatin structure and gene expression.

Key Points

• Single-cell Hi-C is a powerful and rapidly developing
technology to study chromatin architecture, with com-
putational analysis playing a crucial role in extracting
biological meaning from its sparse readouts.

• The number of scHi-C pairwise genomic contacts
is limited by the number of genomic fragments in
the nucleus requiring special approaches for sparse
interactome data analysis, including structure recon-
struction, imputation of interactions, aggregation of
contacts and feature calling for a single map and
embedding, sorting, clustering and pooling for a set of
maps.

• We anticipate improvements in scHi-C data quality
and computational analysis to lead to the expan-
sion of scHi-C applications, eventually resulting in
breakthroughs in our understanding of cell function
comparable with those achieved by scRNA-seq and
scATAC-seq.
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